SUPER ANCHOR SAFETY

Specifications

Top Chords: Min. 2×4 spaced 12 ", 16 " or 24 " o.c. Aluminum: Grade 5052.
Thickness: Legs: $3 / 16$ ", Crossbar: $1 / 4^{\prime \prime}$.
Min. Tensile Strength: $5,000 \mathrm{lb}(22.5 \mathrm{kN})$.
Leg Bolts: M12x30mm stainless steel w/lock nut.
Washers: 12 mm stainless steel friction type.
Weight: 6.5 lb .
The term SAS used in this manual refers to Super Anchor Safety. "Rigging" as used in this manual means to connect PPE together.
$\boldsymbol{\theta}=$ Inspection points.

Specified Use

WS-TrussBar is designed for use as a PPE anchorage point that attaches to the underside of wood top chords in attic spaces as shown on pages 2-3 and Fig.13.0 pg.4.
User Specifications: 1 person max user wt. 310lb(140kg) per single HLL leg including tools. May be used with lifelines, lanyards, SRL's and horizontal lifeline system (HLLS).
HLL Leg: 2 end anchors with a single cable between them.
User PPE: Attach connecting components to the dorsal D-ring of a full body harness as shown on pages 2-3 and Fig.17.0 pg.4.
DO NOT use side or front D-rings or body belts. The use of a personal energy absorber with a PPE lifeline or an SRL equipped with an internal or external energy absorber are required for use with the WS-TrussBar. Free Fall Max length: $6 \mathrm{ft}(1.8 \mathrm{~m})$ / Max. Arrest force: $1800 \mathrm{lb}(8 \mathrm{kN})$. Energy Absorber must be specified for the user's weight.

Non-Specified Use

DO NOT use for window washing or work positioning.
DO NOT install onto truss bottom chords unless supported by an interior wall or other framing.

Fastener Specifications

Must be attached to framing with SAS supplied min. 2.0" or 2.5 " length WS hex head reusable wood screws only as shown at Fig.5.0. WARNING! DO NOT substitute with other types of fasteners unless they have been engineered by a qualified person or supplied by SAS. Use the lowest torque setting to flush mount screws with the leg surface. WARNING! Always use eye protection when installing fasteners. DO NOT install screws by hammering. DO NOT pry against the bar legs to remove fasteners.

Installation onto Top Chords

Framing must be capable of supporting $5,000 \mathrm{lb}(22.5 \mathrm{kN})$ or 2 times the intended fall protection load. Install to the underside of 2×4 or larger dimension top chord with sheathing that is structurally sound and free of defects or damage. Attach 5ea WS 2.0 " screws to each leg as shown at Fig.3.0. Install the WS Bar on the underside of a 2×4 or larger dimension top chord approximately 6-8" from a truss mid span web or king post as shown at Fig.8.0. Clamp 1 leg to assist in stabilizing the bar during installation if necessary.
Framing Options: King Post cross framing of at least 3 trusses may be used when engineered by a competent or qualified person.
WARNING! DO NOT install where top chords are butt jointed. See Fig.16.2. May be installed onto interior or exterior wall studs when sheathing is in place.

Adjusting for Top Chord Spacing

The WS-TrussBar is adjustable for installation onto $12 ", 16$ " and 24 " o.c. top chords(TC). Bar legs rotate to adjust for imperfect spacing between TC's. The maximum width for leg spacing is 13 ", 17 " and 25 ".
See Figs. 6.0-7.0 as an example for 24" TC's.
Leg Attachment Bolt Pressure Adjustment: To limit unwanted leg movement, increase the attachment bolt pressure against the friction washers as shown at Figs. 1.0-2.0. DO NOT allow bar legs to move freely. Adjust pressure to allow some movement for installation. Friction washers may require replacement due to wear.
Leg Bolts and Friction Washers
Use only SAS supplied replacement bolts, lock nuts and friction washers. DO NOT substitute with other types.

Compliance: OSHA1926.502(b)(4)(i)
OSHA 1926.1203(e)(2)(ii) / ANSI Z359.1-07

Fig.1.0
wS-TrussBar

Fig.2.0

Leg Attachment

 Bolt M12x30mm

Nut 1
Lock Nut
(1)

Leg
Fastener Holes

Connector Hole
Leg Flange Weld

Top Chord Spacing Bolt Holes Crossbar Leg
 Fig.1.1
3

Leg Attachment Bolt

Fig.6.0
Bar Leg Adjustments

Fig.5.0
WS Screw

Fig.7.0
Leg Rotation

Note:
WS-TrussBar may be installed at a King post or mid-span truss web as shown at Fig.14.1 pg 3. Position as closely as possible to the truss web as shown at Fig. 8

SAS Sample Length of Fall (LOF) Plans/Attic Fall Hazards

The sample plans shown in this manual are intended as a guideline to assist a competent or qualified person in developing a job specific fall protection plan. The LOF includes several factors that can be used to calculate ground clearance between the work surface and a lower level or obstacle below. Three of the most common attic space fall hazards are:
*Plunge Fall: Minor degree of angle and parallel from the SRL connection point straight through open framing. No significant swing fall. See Figs. 9.0-9.1.
*Swing Fall: A fall that occurs when the tie-off point is directly overhead and the worker has moved a short length perpendicular or parallel to the tie-off point. See Figs. 11.0-12.0.
*Compound Swing Fall (CSF): A fall that occurs at an angle perpendicular to the tie-off point above. See Figs. 11.0-12.0 shown on page 3.
*X Travel: The distance the SRL cable slides along the bottom chord toward the tie-off point center of gravity. See Figs. 11.1-11.2.
*SAS definitions used for this manual.

Table 2.0 Fixed Length $\mathbf{3 0}^{\circ}$ Cables

Cable Part No.	Nominal Length	Finished (Length	Max. TC Spacing	Line Slack
$1335-10$	10 ft	$11^{\prime}-6^{\prime \prime}$	10 ft	$2^{\prime}-10^{\prime \prime}$
$1335-12$	12 ft	$13^{\prime}-6^{\prime \prime}$	12 ft	$3^{\prime}-5^{\prime \prime}$
$1335-14$	14 ft	$16^{\prime}-0^{\prime \prime}$	14 ft	$4^{\prime}-0^{\prime \prime}$
$1335-16$	16 ft	$18^{\prime}-4^{\prime \prime}$	16 ft	$4^{\prime}-8^{\prime \prime}$
$1335-18$	18 ft	$20^{\prime}-66^{\prime \prime}$	18 ft	$5^{\prime}-2^{\prime \prime}$
$1335-20$	20 ft	$23^{\prime}-0^{\prime \prime}$	20 ft	$5^{\prime}-9^{\prime \prime}$

Note: Finished length measured from connector ends.
A10" added for Coil E/A No.1065-AC+steel carabiner
Fig.9.4

Minimum LOF Low Angle Plunge Fall

Working near the tie-off point above reduces the swing fall to a minimum, as shown here.

*Compound Swing Fall (CSF)

Open spaces between the framing at the work surface and angular or perpendicular travel away from the tie-off point above as shown at Figs. 11.0-12.0 will result in a CSF, a combination of a plunge fall and swing fall. Sample plan "C": Shown at Fig.11.1, the worker has traveled at an angle of about $7 \mathrm{ft}(84$ ") from the tie-off point above. Shown at Fig.12.0, the tie-off point is $4-1 / 2 \mathrm{ft}\left(54^{\prime \prime}\right)$ above work surface. Deduct the SRL service length of 30 " ($84 "-54 "=30$ ") added to the LOF. *SAS term used for illustration purposes.

Horizontal Lifeline Systems: There are two primary SAS HLL systems that are compatible with the WS-TrussBar. Both require the use of $\boldsymbol{S A S}$ mfg. SRL's Sidewinder ${ }^{\text {TM }}$ or TossR ${ }^{\text {TM }}$ series.

1) Fixed length HLL No.1335@ 30° angle max. 1 worker per/single leg. Table 2.0 2) Fixed length HLL No. 1336 @ 5° angle max. 1 worker per/single leg. Table 3.0 HLLS No. 1336 requires the use of $\boldsymbol{S A S}$ No.1065-AC coil energy absorber. See Fig.10.0.

HLL no. 1336 @ 5° Angle

Line Slack is the distance between the WS-Truss Bar connector and the lowest point of sag in the line. Line slack must be factored into the LOF.

Fig. 10.0

No.1065-AC
Energy Absorber
w/No.5001-Z Carabiner

Table 3.0 No.1336 HLL System@ 5°

Cable Part No.	Nominal Length	Finished \triangle Length	Max. TC Spacing	Line Slack
1336-10	10ft	9'-4"	10 ft	6.0"
1336-12	12ft	11'-4"	12 ft	7.0"
1336-14	14 ft	13'-4"	14 ft	8.0 "
1336-16	16 ft	15'-4"	16 ft	9.0 "
1336-18	18ft	17'-4"	18 ft	10.0"
1336-20	20ft	19'-4"	20 ft	11.0"

Note: Finished length measured from connector ends. $\triangle 10$ " added for Coil E/A No.1065-AC+steel carabiner.

Using an SRL with the WS-Truss Bar

SRL's are designed for use with an overhead tie-off point as shown at Fig. 12.0 and may be used at lower tie-off points or near the work surface when a fall protection plan has been engineered by a competent or qualified person. Swing falls and compound swing falls are the primary hazard when working in attic spaces over unsheathed trusses. The SRL service length, the amount of cable deployed and the angle of the cable in relation to the tie-off point increase the severity of a CSF while also increasing the LOF. Most residential top floors have a ceiling height of 8 ft and many interior walls. These factors need to be included in a job specific fall protection plan.

WARNING: PROMPT RESCUE!

A plan for immediate rescue is necessary to avoid serious injury, excruciating pain or death resulting from suspension trauma. Ladders strategically stationed on the floor below the work area can provide an immediate means of rescue.
Use SAS S.T.E.P. 6060 suspension ladder and provide training in its use for each worker.

> WARNING!
> Insufficient Ground Clearance!
> A failure to calculate the LOF and connect PPE correctly can result in striking the ground or a lower level in the event of a fall and may cause serious injury or death.

Fig. 11.0

Compound Swing Fall (CSF) Top View

Red----- lines indicate CSF pathway as it cuts through the drywall ceiling.

WS-TrussBar/ Tie-off point attached to top chords

I

Fig. 13.0

Standard Installation

Attached to top chords.

Fig.14.0
Belay Rigging Wrong DO NOT attach to angle web.

Fig.14.1

Attach RS-10 or Hinge anchor to the vertical web only with 6pc WS-2.0" or 2.5" screws.

Fig.14.2
Belay Rigging Example Using an interim anchor point attached to a truss web will reduce the swing fall length.

Compatible Connection Examples

Fig. 15.0
Single SRL w/Carabiner

Fig.15.1
Single or Double HLL

Fig.15.2
Single Lifeline Only

Fig.15.3
No.1065-AC Coil Absorber

When 2 HLL are used in series only 1 person may be attached to 1 leg of a HLL at one time or 1 person each leg.

Fig.16.0

Multiple Lifelines

2 lines may be attached if they are used for relay by 1 person only.
Relay is when 1 person uses 2 lifelines or SRL's to facilitate movement without changing anchor points.

Maintenance/Inspection

Inspect before each use and remove from service if any of the following conditions are present:
(1) Friction washers or lock nuts are missing. Request replacement parts.
2. Leg Flange weld is cracked. Cross-bar or legs are damaged or deformed.
(3) Connector hole is cracked, cut or deformed.
(4) PID/Warning labels are missing. Request replacement labels.
(5) 5ea WS screws in each anchor leg.

DO NOT store materials or tools on top of the WS-TrussBar. Store inside when not in use. DO NOT allow the bar to come in contact with electrical lines.
Removal From Service: Dispose of in a way that prevents further use. It is recommended to cut off the connector hole and disassemble.

Fig.16.2 Truss Chord Butt Splice DO NOT attach the WS-TrussBar or belay anchors to chord splices.

Fig.17.0
PPE Attachments
Fig.17.1
Extender Lanyard Extender Lanyard
Fig.17.2

Product I.D (PID) and Warning Labels Warning Label attached to each leg.

PID Label

 No. 6002 D-Ring

No. 6002-C w/Carabiner

SRL's Sidewinder ${ }^{\text {TM }}$

WARNING: Beorer use read the instrcction manual
included with this anchor at time of shipping. included with this anchor at time of shipping
User Specifications: 0 one persson max wt. 340 ob
 Min. breaking strength: $5,0001 \mathrm{l}$
 Compliance: cumplimiento: ANSI z359.1-107/A10.32-2012
Super Anchor Safety ${ }^{\circ}$.
Monroe, WA 98272 USA
 2 Anchors May be Personan I Ienergy abobsorber required. FASTENERS: Use SASA factory supplied WS Screws on Do not substitute with others types. DO NOT USE nail.
Requires 3 ea Ws 2.01 length screws in each leg.
 or other force or evidinence of damagese to logs or cross-bar
Framing Attach to oully sheathed min.
is is capabile of withstanding $2 x$ the max. fall arrest force

```
NOVERTENCIA: Antes de usar, le el manual
```

NOVERTENCIA: Antes de usar, le el manual
specificaciones para el usuario: Unvio de esta ancla
specificaciones para el usuario: Unvio de esta ancla
Maxima longitud doa caida libuare: Una puerzona, peso máximo maxima de arresto:1.1000
Maxima longitud doa caida libuare: Una puerzona, peso máximo maxima de arresto:1.1000
pueden usar 2 anclas paraoel sistema amortiguador personal.
pueden usar 2 anclas paraoel sistema amortiguador personal.
SUETADORES: Use solamente tomillos de series WS suministrados por I I tabrica).
SUETADORES: Use solamente tomillos de series WS suministrados por I I tabrica).
Se requiere 3ea tornillos de series WS do NO USE clavos.
Se requiere 3ea tornillos de series WS do NO USE clavos.
*)
*)
otra fuerazo evidincic de daño a las piemas ol la bara transversal.
otra fuerazo evidincic de daño a las piemas ol la bara transversal.
de min. 2\times4 que es capaz de aguantar 2 2 la fuerra maxima de arresto de caída.

```
de min. 2\times4 que es capaz de aguantar 2 2 la fuerra maxima de arresto de caída.
```


